Category Archives: BRAIN

neuroscience haiku




An exploration of how the brain works.

Neuroscience haiku
by Leena Prasad


Blood-brain barrier
Microwaves, radiation
Open sesame.

Open sesame, in this haiku, refers to the dangerous break between the blood-brain barrier. This potentially fatal outcome can occur from exposure to microwave and radiation. This, and other, haiku in Eric Chulder’s, The Little Book of Neuroscience Haiku, deliver a quick, entertaining, and simple way to learn about the brain.

Every page in the book contains a haiku with a short explanation. For this haiku Chulder says: “THE BLOOD-BRAIN BARRIER, created by tight-fitting endothelial cells that surround blood vessels, limits materials in the blood from entering the brain. The blood-brain barrier can be broken down by microwaves and radiation, permitting the entry of chemicals into the brain’s blood supply.” The explanation is as succinct as the haiku itself.

Eric Chudler, Ph.D., is a neuroscientist at the University of Washington and the executive director of the Center for Sensorimotor Neural Engineering. He also hosts the website Neuroscience for Kids at Dr. Chulder’s discusses his approach in writing this book at, where his answers are as precise as the contents of his book.

The blood-brain barrier poem is from the “Places” collection in the book. The Little Book of Neuroscience Haiku is organized into three sections: places, things, and people. Places references locations in the brain. Things is about things that interact with the brain. People, of course, are people who have contributed to neuroscience as scientists, writers, artists, etc.

Excerpts from the book:

Use a neural net
In the absence of a brain
To catch jellyfish.
A JELLYFISH has a nervous system of interconnected nerve cells (a neural net), but no brain. The nerve net conducts impulses around the entire body of the jellyfish. The strength of a behavioral response is proportional to the stimulus strength. In other words, the stronger the stimulus, the larger the response.
Tremors in aged
Essay on shaking palsy
Writes James Parkinson.
In 1817, James Parkinson published a manuscript titled “An Essay on the Shaking Palsy” to describe tremor (shaking) and other symptoms of a disorder that now bears his name (Parkinson’s disease).

Borrowing from a traditional Japanese poetic form to present neuroscience, is a unique approach for expanding the horizons of knowledge about the brain. It is also a suitable format for quick flips while waiting at the doctor’s office, waiting for a train, waiting in line, etc. If you are suffering from information overload, this book is a nice change of pace for learning about the nervous system in short bursts of reading.

Indulge your brain
Feed it some haiku
about itself.

To read more about the brain, go to To read other material from Leena, go to

Whose Brain Is It?





Presented within the flow of the lives of real people and fictional characters, this is a monthly exploration of how parts of the brain work.

by Leena Prasad


“Why a map, Mom?”

“Well, how do people normally use a map?”

“To get oriented to a place and to use that to find their way around.” Brian thinks for a minute. “So, it’s to understand where neurons are located inside the brain and how they are connected?” He pauses. “But don’t neuroscientists and neurosurgeons already know the locations and the connections?”

“They do but the brain has more than one billion neurons–” his mom says.

“–and several trillion neural connections or roads, you can say. Wait, are the neurotransmitters like roads or like cars? I guess they are like cars.”

His mom smiles. “That’s a close analogy. How do you think they will use the map?”

Brian scratches his chin.

“There are many diseases like Alzheimer’s or Parkinsons that we don’t fully understand,” his mom says. “ Obama’s BRAIN (Brain Research through Advancing Innovative Neurotechnologies) initiative will help them develop tools that can be used to not only map the brain but to understand how the neurons behave. So, it’s not just about creating a more detailed map but it’s also about getting a dynamic view of the stuff that happens in the brain.”

“But, how, how exactly? How will they capture the messages, the path traversed by the neurotransmitters, the messengers of the brain? I mean, that’s not a static thing…”

“Good point. The current studies use fMRI technologies to measure blood flow in specific parts of the brain. This helps them locate the place where neurotransmitters are active.”

“Yes, I know that!”

“Well, the idea of BRAIN is to provide funding to create more sophisticated tools than the fMRI, to see both high-level view of the neurons and their activities and to get a more close-up view—“

“—yeah, I get it.” He says impatiently. “But how is it different than the research already happening?”

“It’s not necessarily different. It’ll build on the existing work and provide additional resources.”

“Ah, so we can learn about the brain faster.”


“Mom, maybe I can get involved with the BRAIN initiative.”

“Yes, it’s a new thing. So, there will be all types of opportunities if the funding continues. But, first if you have to get qualified by studying neuroscience.”

“Maybe I can become a brain surgeon!”

“Sure, but that means you will learn and use what is already known about the brain. You won’t be making new discoveries. So you won’t be part of BRAIN.”

“So, a neuroscientist then?”

“Yes, or both,” his mom says.

“I can be like Oliver Sacks and be a brain-surgeon and a neuroscientist and a neuroscience writer.”

“Yes, you can be. But first, start exercising your brain on the math homework that’s due tomorrow.”

“Yes  Mom.”


Leena Prasad has a writing portfolio at Links to earlier stories in her monthly column can be found at

Josh Buchanan, a UC Berkeley graduate, edits this column with an eye on grammar and scientific approach.


  1. Flatow,  Ira, host of President Obama Calls for a BRAIN Initiative, NPR>Science>Research News, April 5, 2013,
  2. Neuroscientists Weigh In on Obama’s BRAIN Initiative, Scientific American, May 2, 2013,